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Abstract

The applicability of radiation transfer theory for calculations of the thermal radiation emitted by spherical
particle of a semitransparent material, and in particular the determination of radial heat generation pro®les, is
analyzed. For homogeneous isothermal particles, a comparison with the exact solution based on the Mie theory
shows that the radiation transfer calculations are su�ciently accurate for di�raction parameter of the particle of xr
20. Numerical examples for large particles illustrate the transition from conditions of dominant radiation of the
central region of the particle to conditions of the surface layer emission. A new di�erential approximation for
radiation transfer in a refracting particle is proposed. This approximation called MDP0 (modi®ed DP0) is much

simpler than the radiation transfer equation. Using MDP0, we have a chance to consider radiation±conduction
interaction in nonisothermal particles without great computational e�orts. # 2000 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

In analyzing radiation heat transfer in disperse
systems containing particles up to hundreds of

microns in size, a single particle is usually considered
to be isothermal. This assumption greatly simpli®es
the calculation of the thermal radiation of the par-
ticle. At the same time, in the case of intensive cool-

ing, the temperature di�erence between the center and
the surface of the particle may be considerable. One
example is the problem of vapor explosion in a

nuclear reactor severe accident due to thermal inter-
action of molten uranium oxide droplets having initial
temperature of about 3200 K with ambient boiling

water [1].
Thermal radiation of a nonisothermal particle is an

especially interesting problem for particles of a semi-

transparent material (in particular, for metal oxide

particles). The point is that materials, which are semi-

transparent in the infrared spectral range, are usually

characterized by low thermal conductivity and, as a

result, by a comparatively large temperature di�erence

between the center and the surface of the particle. On

the other hand, in the case of a small index of absorp-

tion, the solution to the problem is expected to be

more complex because of the possible considerable

contribution of radiation emitted from the central

high-temperature core of the particle.

A rigorous statement of the problem must take

into account e�ects of interference as is done in the

Mie theory. At the same time, in the case of large

particles, for which the temperature di�erence is
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more important, one can try to use the geometrical

optics approximation and the radiation transfer the-

ory. In recent papers [2±4], it was shown that geo-
metrical optics is a reasonable approximation for

the calculating the energy-density distribution inside

large nonabsorbing spherical particles. It is import-

ant that the geometrical-optics results show the
main features of the Mie solution and provide a

physical explanation of the electromagnetic inter-

actions inside particles, which are large in compari-

son with the wavelength of radiation.

The main objective of this paper is to determine the
range of applicability of the radiation transfer theory

for calculation of the heat generation distribution

inside a particle and to develop a simple di�erential
approximation, which would be proper for the solution

to the spectral radiative±conductive problem.

2. The exact Mie solution for an isothermal particle

The thermal radiation emitted by a homogeneous
isothermal spherical particle of arbitrary material may
be calculated using the well-known exact Mie solution.

It is su�cient to determine the value of the absorption
e�ciency factor Qa, which is a function of the di�rac-
tion parameter x � 2pa=l and the complex index of

Nomenclature

a particle radius
ak, bk, ck, dk Mie coe�cients
Bl Planck's function

C1, C2 coe�cients in Eq. (36)
D dimensionless radiation di�usion coef-

®cient

Er, Ey, Ef amplitudes of electric ®eld com-
ponents

E0 electric ®eld amplitude in the incident

wave
g, h, g0, h0 dimensionless functions de®ned by

Eqs. (19) and (33)
i i � �������ÿ1p
I radiation intensity
k thermal conductivity
l relative ray length in Eq. (29)

m complex index of refraction
n index of refraction
Na, Nm parameters of di�usion approxi-

mation, see comments to (28)
p local heat generation rate
P angle-averaged heat generation rate

q radiative ¯ux
�q relative radiative ¯ux in Eq. (39)
qconv convective heat ¯ux
Qa absorption e�ciency factor

r radial coordinate
�r dimensionless coordinate, r=a
R, Rjj, R? Fresnel's re¯ection coe�cient

S dimensionless heat generation function
de®ned by Eq. (7)

T temperature
�T average temperature in Eq. (25)
W dimensionless heat generation rate

de®ned by Eq. (15)

x di�raction parameter
y independent variable in Eq. (21)

Greek symbols
ak, bk, gk mathematical functions in Eq. (3)

g, g�1� coe�cients of boundary conditions in
Eqs. (20) and (34)

e particle emissivity

y angle measured from the incident
wave direction in (5) or from the
radius-vector one in Eq. (9)

k index of absorption

l radiation wavelength
m angular coordinate, m � cos y
mc, m� values of m de®ned by Eqs. (11) and

(32)
pk, tk Mie angular functions in Eq. (5)
r current di�raction parameter, r � �rx

Sa absorption coe�cient
t, t0 optical thickness, see Eqs. (14) and

(15)

j dimensionless radiation intensity
f azimuth angle
ck, zk Riccati±Bessel functions

Subscripts
av average temperature

k order of mathematical functions
r radial component
s particle surface

l spectral dependent
y, f angular components
e external
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refraction m � nÿ ik [5±7]. The absorption e�ciency
factor is usually calculated as the di�erence between

the extinction and the scattering e�ciency factors. The
corresponding equation is as follows [5±7]:

Qa � 2

x 2

X1
k�1
�2k� 1�

h
Re�ak � ÿ jakj2 � Re�bk �

ÿ jbkj2
i

�1�

where the Mie coe�cients are

ak � ck�x�c 0k�mx� ÿmc 0k�x�ck�mx�
zk�x�c 0k�mx� ÿmz 0k�x�ck�mx�

bk � mck�x�c 0k�mx� ÿ c 0k�x�ck�mx�
mzk�x�c 0k�mx� ÿ z 0k�x�ck�mx�

�2�

Using logarithmic derivatives of Riccati±Bessel func-

tions, Eq. (2) can be written in a form more convenient
for calculations [7]:

ak � gk�x�
ak�mx� ÿmak�x�
ak�mx� ÿmbk�x�

bk � gk�x�
mak�mx� ÿ ak�x�
mak�mx� ÿ bk�x�

�3�

ak�z� � c 0k�z�=ck�z� bk�z� � z 0k�z�=zk�z�

gk�z� � ck�z�=zk�z�

As was shown in Ref. [5], an alternative expression for
the absorption e�ciency factor may be obtained by in-

tegration of the internal (not external) electromagnetic
®eld (see also Ref. [8]):

Qa � 2

x 2

X1
k�1

2k� 1

jzk�x�j2
(

Im
�
mak�mx��

jbk�x� ÿmak�mx�j2

� Im
�
m�ak�mx��

jmbk�x� ÿ ak�mx�j2
)

�4�

where the asterisk (�) denotes a complex conjugate
quantity. It can be shown that Eqs. (1) and (4) are
mathematically equivalent [9].
The spectral emissivity of a particle may be deter-

mined from the solution of the ¯uctuation electrody-
namics problem [10]. In this case, the ®nal expression
for el is identical to Eq. (4) [9,10]. This result con®rms

the Kirchho�'s law: el � Qa [6,10].
It is well known that absorption of the radiation by

a particle is, generally speaking, nonuniform over the

volume of the particle. In the case of interaction of a
plane electromagnetic wave with a homogeneous
spherical particle, the amplitudes of the electric ®eld

components inside the particle are given by the follow-
ing equations [5,6]:

Er � E0 cos f
m2r2

X1
k�1

ik�2k� 1�dkck�mr�P �1�k �m�

Ey � E0 cos f
mr

X1
k�1

ik�2k� 1�
k�k� 1�

�
ckck�mr�pk�m�

ÿ idkc
0
k�mr�tk�m�

�

Ef � E0 sin f
mr

X1
k�1

ik�1�2k� 1�
k�k� 1�

�
ickck�mr�tk�m�

� dkc
0
k�mr�tk�m�

� �5�

where

ck � mi

mzk�x�c 0k�mx� ÿ z 0k�x�ck�mx�

dk � mi

zk�x�c 0k�mx� ÿmz 0k�x�ck�mx�

pk �
P �1�k �m��������������
1ÿ m2

p tk�m� � ÿ
�������������
1ÿ m2

p d

dm
P �1�k �m�

Here, r � 2pr=l � �r=a�x, m � cos y, and the angle y is

measured from the direction of the incident wave,
P
�1�
k �m� is the associated Legendre polynomial. The

value of the heat generation rate is equal to the power
absorbed by a unit of volume of the particle [11±13]:

pl � 4pnk
l

I
�0�
l

ÿjErj2 � jEyj2 � jEfj2
�

jE0j2
�6�

where I
�0�
l is the spectral intensity of the incident radi-

ation. After integration over the range of the angle y,
one can derive the following relation for the angle-
averaged heat generation rate of a spherical layer of
unit thickness (see also Ref. [12]):

Pl�r� �
�2p
0

�p
0

pl�r, y�sin y dy df � 16p2nk
l

I �0�l S �7�

S � 1

2jmj4r4
X1
k�1
�2k� 1�

h
k�k� 1�jdkck�mr�j2

� jmj2r2
�
jckck�mr�j2 � jdkc 0k�mr�j2

�i
The spectral emissivity of the particle may be expressed
as follows:
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el�x, m� �

�a
0

Plr
2 dr

pa2I �0�l

� 8nk
x 2

�x
0

Sr2 dr �8�

Calculation by means of Eqs. (7) and (8) must give the
same values of el as those calculated by Eq. (1) or (4)
that are simpler: however, Eq. (7) also gives radial pro-

®les of the heat source inside the particle. Eq. (8) may
be used as a control of the accuracy of the heat source
calculation.

3. The geometrical optics approximation

3.1. Numerical solution of the radiation transfer

equation

The radiation transfer equation for a spherical
volume of a nonscattering medium with an absorption
coe�cient Sa�r� and a temperature pro®le T�r� is as

follows [14,15]:

m
@Il
@r
� 1ÿ m2

r

@ Il
@m
� SaIl � 2pn2SaBl�T� �9�

Here, Il�r, m� is the spectral radiation intensity at point
r (0 R r R a ) in the direction ÿ1Rm � cos yR1 �y is

measured from the direction of the r-axis) and is inte-
grated over the azimuth. The boundary conditions
(symmetry at r = 0 and Snell's law at r � a� are as fol-

lows:

Il�0, ÿ m� � Il�0, m� Il�a, ÿ m� � R�m� Il�a, m� �10�

where 0RmR1, R�n, m� is the Fresnel's re¯ection coef-

®cient for unpolarized radiation [16]:

R � ÿRjj � R?
�
=2 �11�

Rjj �

8><>:
mÿ n

������������������������������
1ÿ n2

ÿ
1ÿ m2

�q
m� n

������������������������������
1ÿ n2

ÿ
1ÿ m2

�q
9>=>;

2

R? �

8><>:nmÿ
������������������������������
1ÿ n2

ÿ
1ÿ m2

�q
nm�

������������������������������
1ÿ n2

ÿ
1ÿ m2

�q
9>=>;

2

m > mc

Rjj � R? � 1, mRmc �
������������������
1ÿ 1=n2

p
:

The value of R = 1 for mRmc corresponds to total in-
ternal re¯ection.

The angle-averaged heat generation rate for a spheri-
cal layer of unit thickness is equivalent to the diver-
gence of the spectral radiation ¯ux:

Pl�r� � 1

r2
d

dr

ÿ
r2ql

�
� Sa

"
4pn2Bl�T� ÿ

�1
ÿ1

Il�r, m� dm
#

�12�

The spectral radiation intensity on the outer surface of

the volume and the corresponding spectral radiation
¯ux are de®ned as follows:

I e
l�a, me � �

�
1ÿ R�m��Il�a, m�,

m �
��������������������������������
1ÿ ÿ1ÿ m2e

�
=n2

q
, 0RmeR1 �13�

qe
l�a� �

�1
0

I e
l�a, me �me dme �

�1
mc

�
1ÿ R�m��Il�a, m�m dm

In the case of a homogeneous isothermal medium Sa,

T = const), it is convenient to use dimensionless vari-
ables

t � Sar j�t, m� � Il=
ÿ
2pn2Bl

�
�14�

and to introduce the following expressions:

t0 � Saa Wl � Pl=
ÿ
2pSan

2Bl

�
el � qe

l=�pBl �
�15�

Note that the absorption coe�cient and the optical
thickness are related to the index of absorption and

the di�raction parameter by the following simple ex-
pressions:

Sa � 4pk=l t � 2kr t0 � 2kx �16�

In the new variables, the radiation transfer equation
(9), the boundary conditions (10), and Eqs. (12) and

(13) can be written as follows:

m
@j
@t
� 1ÿ m2

t
@j
@m
� j � 1, 0RtRt0, ÿ 1RmR1

j�0, ÿ m� � j�0, m�

j�t0, ÿ m� � R�m�j�t0, m�, 0RmR1

Wl�t� � 2ÿ
�1
ÿ1

j�t, m� dm

el � 2n2
�1
mc

�
1ÿ R�m��j�t0, m�m dm

�17�

Presenting the radiation intensity in the form
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j�t, m� �
�
jÿ�t, ÿ m�, m < 0
j��t, m�, m > 0

�18�

and introducing the functions [7]

g�t, m� � jÿ � j�

h�t, m� � jÿ ÿ j�, 0 < mR1
�19�

we obtain the following, instead of Eq. (17):

m
@h

@t
� gÿ 1ÿ m2

t
@h

@m
ÿ 2

t � 0, h � 0

m
@g

@t
� hÿ 1ÿ m2

t
@g

@m

t � t0, gg� h � 0

Wl�t� � 2ÿ
�1
0

g�t, m� dm

el � n2
�1
mc

�1ÿ R��g�t0, m� ÿ h�t0, m�
�
m dm

� 2n2
�1
mc

gg�t0, m�m dm

�20�

where g � �1ÿ R�=�1� R�: Replacing the variables
�t, m� by �t, y�, where y � t

�������������
1ÿ m2

p
, leads to much sim-

pler combined equations:���������������������
1ÿ �y=t�2

q
@h

@t
� gÿ 2

���������������������
1ÿ �y=t�2

q
@g

@t
� h �21�

in the triangular computational region 0RtRt0,
0RyRt0: After transition to one second-order
equation for the function g�t, y�, we have

t
ÿ
t2 ÿ y2

�@ 2g
@t2
� y2

@g

@t
ÿ t3�gÿ 2� � 0

t � 0,
@g

@t
� 0

t � t0, gg�
���������������������
1ÿ �y=t�2

q
@g

@t
� 0

�22�

where g � g�n,
���������������������
1ÿ �y=t�2

q
�: The parabolic problem

(22) does not contain derivative @g=@y and may be
considered to be a set of separate boundary-value

problems at di�erent ®xed values of y. After solving
the problem (22), one can ®nd Wl�t� and el by inte-
gration:

Wl�t� � 2ÿ 1

t

�t
0

g�t, y�y dy���������������
t2 ÿ y2

p
el � 2

n2

t20

�t0=n
0

gg�t0, y�y dy

�23�

To calculate the value of el we can also use the follow-

ing simple relation derived from the energy balance on
the surface t � t0:

el � 2n2

t20

�t0
0

Wl�t�t2 dt �24�

The algorithm proposed remains unchanged in the

case of a nonisothermal volume. It is su�cient to cal-
culate the Planck's function in Eqs. (14) and (15), for
instance, at the average temperature

�T � 3

a3

�a
0

T�r�r2 dr �25�

and to multiply the numerical coe�cient 2 in Eqs. (22)
and (23) for Wl�t� by the ratio Bl�T �=Bl� �T�: Note
that the emissivity has no sense in the case of non-

isothermal volume and the radiative ¯ux should be cal-
culated immediately.

4. Comparison of calculations that use di�erent

theoretical models

4.1. The spectral emissivity of an isothermal particle

The main radiative properties of isothermal spherical
particles were comprehensively analyzed in [7]. It was
shown that, in the case of a semitransparent material

with kR0:01, the spectral emissivity of the particle is
weakly a�ected by changes in the refractive index over
the interval 1RnR2 with an arbitrary di�raction par-

ameter outside of the Rayleigh scattering region. The
following approximation is applicable in the range
1:5RnR2, 0:002RkR0:02 [17]:

el � 4n

�n� 1�2
�
1ÿ exp� ÿ 5kx��

� 5kx�nÿ 1�2exp
�ÿ x�nÿ 1�=5� �26�

Eq. (26), taken together with an approximation for the
transport scattering e�ciency factor makes it possible
to simplify radiation transfer calculations in disperse

systems [7].
In this paper, we will concern ourselves with a com-

parison of the Mie solution and the radiation transfer

calculations inside the particle. Some typical results in
the range of optical thicknesses of most interest are
presented in Fig. 1. One can see that the numerical sol-

L.A. Dombrovsky / Int. J. Heat Mass Transfer 43 (2000) 1661±1672 1665



ution of the radiation transfer equation only slightly

underestimates the emissivity of the particle when k <
0:01 and t0 > 0:2; it does not essentially di�er from

the asymptotic solution in the limit when k40:
Exact calculations of particle emissivity using the

geometrical optics approximation are very simple in

the case of n = 1, when the analytical solution is

known. Note that it is more convenient to consider

absorption of the incident plane wave by a particle

instead of thermal radiation from a particle. The fol-

lowing expression for particle emissivity was derived

by Van de Hulst [5] for optically soft particles

Fig. 1. Spectral emissivity of spherical particle at n = 1.5 (a) and n = 2 (b): 1 Ð numerical solution of the radiation transfer

equation inside the particle, 2±5 Ð Mie theory calculations (2 Ð k � 0:002, 3 Ð 0.005, 4 Ð 0.01, 5 Ð 0.02).

L.A. Dombrovsky / Int. J. Heat Mass Transfer 43 (2000) 1661±16721666



�x� 1, jmÿ 1j � 1):

el � 2

�1
0

�
1ÿ exp� ÿ 2t0m�

�
m dm

� 1� exp� ÿ 2t0 �
t0

ÿ 1ÿ exp� ÿ 2t0 �
2t20

�27�

It is possible to compare numerical calculations using
the algorithm proposed in Section 3 with the exact

analytical solution (27). Because the angular dependen-
cies of the radiation intensity are smooth, we can also
employ the di�usion approximation and the corre-

sponding analytical solution [5]:

el � 4
����
D
pÿ

4ÿ ���������������������
4ÿNaNm

p � ����
D
p � 1=

�
coth

ÿ
t0=

����
D
p �

ÿ ����
D
p

=t0
�

�28�

Here, D � 1=�4ÿNa� is the dimensionless radiation
di�usion coe�cient: Na is equal to 0 for the DP0-ap-

proximation and to 1 for the P1-approximation; Nm �
0 for the Marshak boundary condition and Nm � 1 for
the Pomraning one (the P1m-approximation) [7]. A

comparison of di�erent calculations is presented in
Table 1. Note there is practically no di�erence between
calculations using the Mie theory and those using the
geometrical optics approximation for small values of

the absorption index. We can also see that the error in
the di�usion approximation is very small for an arbi-
trary optical thickness of the particle. It is interesting

that all the theoretical models considered give the same
result of el � 4t0=3 in the limit when k, t0 � 1 for uni-
form heat generation over the volume of the particle.

In Ref. [18], the following more general expression
for Qa � el obtained with the geometrical optics ap-
proximation when k� n was given (this expression

was also derived in Ref. [19]):

el �
�1
0

�
1ÿ Rjj

1ÿ Rjjexp� ÿ t0l� �
1ÿ R?

1ÿ R?exp� ÿ t0l�
�

� �1ÿ exp� ÿ t0l�
�
m dm �29�

Here, l�m� � 2
�������������������������������
1ÿ �1ÿ m2�=n2

p
and Rjj�m�, R?�m� are

de®ned in Eq. (11). For the optically thin limit
�t0 � 1), we ®nd the following expression in Ref. [18]:

el � 4t0
3

n2
h
1ÿ

ÿ
1ÿ 1=n2

�3=2i �30�

which was also derived in Refs. [6,20]. A more accu-

rate equation that was derived when taking into
account end e�ects may be found in Ref. [21].
To evaluate the error of the numerical solution of

the radiation transfer equation, a comparison may be
made with the tabulated data in Ref. [18], which were
obtained by accurate integration of Eq. (29) (see Table
2). It is important that the computational error be

much less than the di�erence between the geometrical
optics approximation and the Mie theory solution
(Fig. 1).

4.2. Heat generation distribution inside the particle

In the case of n > 1, internal heat generation is not
uniform even for optically thin particles �t0 � 1�
(except for the Rayleigh region when nx� 1); it

depends essentially on the di�raction parameter. This
contention is illustrated in Fig. 2, where calculations
using Eqs. (7) and (8) are presented in the form of

dimensionless pro®les:

�Wl��r� � Wl��r�

3

�1
0

Wl��r��r2 d�r

� 8

3
nkS��r�=el, �r � r=a �31�

The e�ect of the absorption index, when kR0:02, is

insigni®cant, whereas an increase of the refractive
index, especially when n > 1:5, results in considerable
deformation of the curves Wl��r�: This deformation

strongly depends on the value of the di�raction par-

Table 1

Spectral emissivity of non-refracting particles (n = 1)

Mie theory Radiation transfer theory Di�usion approximation (28)

t0 k � 0:01 k � 0:001 Numerical solution Exact analytical solution (27) DP0 P1 P1m

0.2 0.2317 0.2306 0.226 0.2306 0.2331 0.2336 0.2300

0.5 0.4729 0.4716 0.464 0.4715 0.4768 0.4823 0.4672

1 0.7047 0.7030 0.695 0.7030 0.6990 0.7201 0.6870

2 0.8884 0.8865 0.881 0.8864 0.8576 0.9033 0.8518

5 0.9821 0.9801 0.978 0.9800 0.9473 1.0106 0.9465
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ameter. As usually in the case, the most complex inter-

ference e�ects are observed in the resonance range

2x�nÿ 1� < 10 [7]. For larger particles, we can expect a

satisfactory description of the dependencies Wl��r� by
radiation transfer theory. A comparison of the numeri-

cal solution of the problem (22) and the Mie theory

calculations presented in Fig. 3 shows that, for suf-

®ciently large particles �xr20), the heat generation

pro®le can be calculated without taking into account

any interference e�ects for an arbitrary optical thick-

ness of the particle. One can see that radiation transfer

theory describes with su�cient accuracy the following

special features of the internal radiation ®eld: a displa-

cement of the maximum of local heat generation from

the center to the surface as the optical thickness of the

particle increases; a change in the radial dependence of

heat generation at the point �r � 1=n; and a relative

increase in the thermal radiation emitted from the cen-

tral region �r < 1=n with increasing the index of refrac-

tion. The latter features of the heat generation

distribution inside weakly absorbing particles were

found previously in [12]. The discontinuity at �r � 1=n

was also found in [2] for dielectric spheres of n =

1.33, xr300: The kink in the curves Wl��r� is explained
by the internal re¯ection of radiation emitted by el-

ementary volumes placed at �r > 1=n: One can ®nd the

position of the kink from a simple geometrical con-

sideration.

In spite of the comparatively simple physical model

of radiation transfer, the calculated radiation ®eld in a

large refracting particle is rather complex, mainly, due

to the e�ect of the total internal re¯ection at mRmc:
Some typical angular dependencies of the dimension-

less radiation intensity are presented in Fig. 4, which

illustrates the evolution of j��r, y� as �r varies from 1=n

to 1 and due to refraction on the particle surface. The

complex shape of the angular curves when �r > 1=n in-

dicates that the ordinary di�usion approximation is

inapplicable for describing radiation transfer in the

problem under consideration.

Table 2

Spectral emissivity of particles with index of refraction n>1. Calculations in geometrical optics approximation

Exact solution (29) Numerical solution of radiation transfer equation MDP0-approximation

t0 n = 1.5 n = 2 n = 1.5 n = 2 n = 1.5 n = 2

0.1 0.1582 0.1639 0.156 0.162 0.160 0.169

0.2 0.2889 0.2917 0.283 0.289 0.293 0.304

0.4 0.4790 0.4744 0.474 0.472 0.494 0.498

0.6 0.6100 0.5934 0.604 0.591 0.632 0.625

1 0.7626 0.7256 0.758 0.723 0.793 0.766

2 0.8831 0.8221 0.881 0.821 0.924 0.868

4 0.9074 0.8930 0.907 0.838 0.956 0.887

6 0.9082 0.8394 0.907 0.838 0.958 0.888

Fig. 2. Heat generation pro®les in particles of moderate size.

Mie theory calculations for x = 1 (a) and x = 10 (b): I Ð

k � 0:01, II Ð 0.02; 1 Ð n = 1.5, 2 Ð 2, 3 Ð 2.5, 4 Ð 3.
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5. The modi®ed di�erential approximation

An analysis of angular dependencies of the radiation
intensity in the range t0=n < tRt0 (see Fig. 4) shows

that the following approximation of the function
j�t, m� may be rather good:

j�t, m� �
8<:
jÿ0 �t�, ÿ 1Rm < ÿm�
1, ÿ m� < m < m�
j�0 �t�, m� < mR1

m��t� �
�����������������������
1ÿ

�
t0
nt

�2
s �32�

Integrating radiation transfer Eq. (17) over m separ-
ately on intervals ÿ1Rm < m� and m� < mR1, and
introducing the functions

g0 � jÿ0 � j�0 h0 � jÿ0 ÿ j�0 �33�

we obtain after transformations the following coupled
equations and the boundary condition:

ÿ1� m�
2

h 00 � g0 � 2 ÿ 1� m�
2

g 00 � h0 � 0

Fig. 3. Heat generation pro®les in large particles at t0 � 0:2
(a), 2 (b), and 5 (c): I Ð n = 2, II Ð 3; 1 Ð numerical sol-

ution of the radiation transfer equation, 2±4 Ð Mie theory

calculations (2 Ð x = 20, 3 Ð 50, 4 Ð 100).

Fig. 4. Angular dependencies of dimensionless radiation inten-

sity at n = 2 for particles with t0 � 0:2 (a) and t0 � 2 (b): 1

Ð �r � 0:5, 2 Ð �r � 0:75, 3 Ð �r � 1ÿ d, 4 Ð

�r � 1� d �0 < d� 1�:
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g�1�g0�t0 � � h0�t0 � � 0

g�1� � �1ÿ R1 �=�1� R1 �
�34�

For simplicity, the coe�cient R1 may be taken to be

R�1�: In the central region tRt0=n, according to the
usual DP0-approximation [7], we have:

ÿ1
2
h 00 �

h0
t
� g0 � 2 ÿ 1

2
g 00 � h0 � 0 �35�

and the symmetry condition h0�0� � 0: Finally, the

boundary-value problem in the modi®ed DP0-approxi-
mation (MDP0) for an unknown function g0�t� can be
written as follows:

ÿg 000 =4ÿ C1g
0
0=�2t� � C2�g0 ÿ 2� � 0 �36�

C1 �
�
1, tRt0=nÿ
1ÿ m�

�
=
ÿ
2m�

�
, t > t0=n

C2 �
(
1, tRt0=nÿ
1� m�

�ÿ2
, t > t0=n

g 00�0� � 0 g�1�g0�t0 � � 1� mc
2

g 00�t0 � � 0

g�1� � 2n=
ÿ
n2 � 1

�
�Wl�t� �

ÿ
1ÿ m�

��
2ÿ g0�t�

�
el � g�1�g0�t0 �

The MDP0-approximation is much simpler than the
transfer equation. It is su�cient to note that the com-

putational time on the same ®nite-di�erence mesh
decreases in two orders of magnitude when the MDP0

is used. At the same time, the error in MDP0 is not

large (see Table 2 and Fig. 5). It is important that the

heat generation pro®les calculated in MDP0 may be
considered to be a su�ciently accurate approximation

of the exact Mie solution for large particles. Note that
the MDP0-approximation gives a correct value for el
and a correct pro®le �Wl�t�, even in the case of an opti-

cally thin particle.
It is clear that calculations using MDP0 are much

faster than Mie calculations. For example, when x =

100, it takes about 14 s (on a Pentium-II, 266 MHz
computer) to calculate the 500-point pro®le of the heat
generation rate in a particle having di�raction par-

ameter of x = 100 by Mie theory, whereas the time
for the same calculation by MDP0 is about 0.06 s.

6. Thermal radiation from a nonisothermal particle

To calculate the temperature pro®le in a large hot
particle, which is cooled due to radiative and convec-

tive heat transfer with an ambient medium, we have to
solve the transient radiative±conductive problem inside
the particle with convective heat transfer in the bound-

ary condition. Limited space does not allow us to con-
sider this problem. We will present only several results
for the parabolic temperature pro®le in the particle

that qualitatively evaluates the nonuniform volumetric
thermal radiation of the particle:

T�r� � T0 ÿ qconv

2ka
r2 �37�

Speci®cally, we set T0 � 3000 K, qconv=k � 10 K/mm.
In this alternative, the surface temperature varies from

Ts � 2900 to 2500 K when the radius of the particle
increases from a � 20 to 100 mm. The integral radiative
¯ux from the particle is de®ned as

q �
�1
0

ql dl �38�

Below, we consider the following relative quantities:

�q � q
�
T�r��=q�Ts � �qav � q� �T�=q�Ts � �39�

The results of calculations using the MDP0-approxi-
mation for particles with a constant index of refraction
n = 2 are presented in Fig. 6. We see that the contri-
bution of the central hot region to the total thermal

radiation from the particle decreases as the index of
absorption increases. Nevertheless, the radiation from
a particle of radius 20 mm remains greater than that

calculated using the average temperature. For larger
particles, there is a transition from conditions with
radiation mainly from the central region radiation � �q >
�qav� to dominant radiation from the surface layer
� �q < �qav). This transition takes place at an optical
thickness of the particle of t013:5 (see Fig. 6), which

Fig. 5. Heat generation pro®les calculated by numerical sol-

ution of the radiation transfer equation (a) and by use of

MDP0-approximation (b) at n = 2: 1 Ð t0 � 0:2, 2 Ð 2, 3

Ð 5.
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agrees well with evolution of the power pro®le of radi-

ation shown in Fig. 5.

7. Conclusions

. The radial distribution of the heat source of thermal
radiation in an isothermal spherical particle is ana-

lyzed using the Mie theory. Calculations showed
that this distribution depends essentially on optical
constants n, k and also on the di�raction parameter

x. For particles of a weakly absorbing material, the
general solution degenerates at low and also at high
values of the di�raction parameter. In both limits,
the solution does not depend on the index of

absorption k, and we have only two parameters: n,
x when x << 1 or n, t0 � 2kx when x� 1: The latter
limit corresponds to the region of the geometrical

optics, where the radiation transfer theory may be
applicable.

. A numerical solution of the radiation transfer

equation inside a homogeneous spherical particle
with Fresnel's boundary condition is obtained. A
comparison with the Mie theory calculations for iso-
thermal particles shows that the geometrical optics

approximation is su�ciently accurate, even for par-
ticles that are not very large �xr20), both for the
particle emissivity value and for the heat generation

pro®le. For typical indices of refraction, it is found
that a transition from dominant thermal radiation
of the central region to that of the surface layer

takes place when the optical thickness of the particle
is t013±4:

. On the basis of the proposed approximate descrip-

tion of the angular dependence of the radiation
intensity, coupled equations of the modi®ed di�er-

ential approximation (MDP0) are derived. The
MDP0-approximation gives a su�ciently accurate
solution for the thermal radiation ®eld inside the

particle, and the computational time is two orders
of magnitude less than that of the numerical sol-
ution of the radiation transfer equation. This latter

circumstance is very important for a numerical
analysis of combined heat transfer problems in dis-
perse systems containing high-temperature noni-

sothermal particles.
. A calculation of thermal radiation from single

nonisothermal particles using the MDP0-approxi-
mation shows that, for typical metal oxide particles

of radius 100 mm with radial variation of tem-
perature from 3000 to 2500 K, the error of the
radiative ¯ux calculation in the isothermal approxi-

mation using the volume-averaged temperature is
at a level of 220%. A more rigorous analysis of
the transient thermal state of a radiating particle

should be based on the solution to the radiative±
conductive heat transfer problem with account
taken of the temperature varying complex index of

refraction and the dynamics of crystallization. In
this case, a generalization of the radiation transfer
model for at least two-layer spherical particles is
needed.
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